![]() |
Prev | Next | sparse_jac_pattern_xam.cpp | Headings |
# include <cstdio> # include <cppad/py/cppad_py.hpp> bool sparse_jac_pattern_xam(void) { using cppad_py::a_double; using cppad_py::vec_int; using cppad_py::vec_double; using cppad_py::vec_a_double; using cppad_py::d_fun; using cppad_py::sparse_rc; // // initialize return variable bool ok = true; //------------------------------------------------------------------------ // number of dependent and independent variables int n = 3; // // create the independent variables ax vec_double x(n); for(int i = 0; i < n ; i++) { x[i] = i + 2.0; } vec_a_double ax = cppad_py::independent(x); // // create dependent variables ay with ay[i] = ax[j] // where i = mod(j + 1, n) vec_a_double ay(n); for(int j = 0; j < n ; j++) { int i = j+1; if( i >= n ) { i = i - n; } a_double ay_i = ax[j]; ay[i] = ay_i; } // // define af corresponding to f(x) d_fun f(ax, ay); // // sparsity pattern for identity matrix sparse_rc pat_in = sparse_rc(); pat_in.resize(n, n, n); for(int k = 0; k < n; k++) { pat_in.put(k, k, k); } // // loop over forward and reverse mode for(int mode = 0; mode < 2; mode++) { sparse_rc pat_out = sparse_rc(); if( mode == 0 ) { f.for_jac_sparsity(pat_in, pat_out); } if( mode == 1 ) { f.rev_jac_sparsity(pat_in, pat_out); } // // check that result is sparsity pattern for Jacobian ok = ok && n == pat_out.nnz(); vec_int col_major = pat_out.col_major(); vec_int row = pat_out.row(); vec_int col = pat_out.col(); for(int k = 0; k < n; k++) { int ell = col_major[k]; int r = row[ell]; int c = col[ell]; int i = c+1; if( i >= n ) { i = i - n; } ok = ok && c == k; ok = ok && r == i; } } // return( ok ); }