|
Prev
| Next
|
|
|
|
|
|
|
fun_reverse_xam.cpp |
Headings |
@(@\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\R}[1]{ {\rm #1} }@)@C++: Reverse Mode AD: Example and Test
# include <cstdio>
# include <cppad/py/cppad_py.hpp>
bool fun_reverse_xam(void) {
using cppad_py::a_double;
using cppad_py::vec_double;
using cppad_py::vec_a_double;
using cppad_py::d_fun;
using cppad_py::a_fun;
//
// initialize return variable
bool ok = true;
//------------------------------------------------------------------------
// number of dependent and independent variables
int n_dep = 1;
int n_ind = 3;
//
// create the independent variables ax
vec_double xp(n_ind);
for(int i = 0; i < n_ind ; i++) {
xp[i] = i;
}
vec_a_double ax = cppad_py::independent(xp);
//
// create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
a_double ax_0 = ax[0];
a_double ax_1 = ax[1];
a_double ax_2 = ax[2];
vec_a_double ay(n_dep);
ay[0] = ax_0 * ax_1 * ax_2;
//
// define af corresponding to f(x) = x_0 * x_1 * x_2
d_fun f(ax, ay);
// -----------------------------------------------------------------------
// define X(t) = (x_0 + t, x_1 + t, x_2 + t)
// it follows that Y(t) = f(X(t)) = (x_0 + t) * (x_1 + t) * (x_2 + t)
// and that Y'(0) = x_1 * x_2 + x_0 * x_2 + x_0 * x_1
// -----------------------------------------------------------------------
// zero order forward mode
int p = 0;
xp[0] = 2.0;
xp[1] = 3.0;
xp[2] = 4.0;
vec_double yp = f.forward(p, xp);
ok = ok && yp[0] == 24.0;
// -----------------------------------------------------------------------
// first order reverse (derivative of zero order forward)
// define G( Y ) = y_0 = x_0 * x_1 * x_2
int q = 1;
vec_double yq1 = vec_double(n_dep);
yq1[0] = 1.0;
vec_double xq1 = f.reverse(q, yq1);
// partial G w.r.t x_0
ok = ok && xq1[0] == 3.0 * 4.0 ;
// partial G w.r.t x_1
ok = ok && xq1[1] == 2.0 * 4.0 ;
// partial G w.r.t x_2
ok = ok && xq1[2] == 2.0 * 3.0 ;
// -----------------------------------------------------------------------
// first order forward mode
p = 1;
xp[0] = 1.0;
xp[1] = 1.0;
xp[2] = 1.0;
yp = f.forward(p, xp);
ok = ok && yp[0] == 3.0*4.0 + 2.0*4.0 + 2.0*3.0;
// -----------------------------------------------------------------------
// second order reverse (derivative of first order forward)
// define G( y_0^0 , y_0^1 ) = y_0^1
// = x_1^0 * x_2^0 + x_0^0 * x_2^0 + x_0^0 * x_1^0
q = 2;
vec_double yq2 = vec_double(n_dep * q);
yq2[0 * q + 0] = 0.0; // partial of G w.r.t y_0^0
yq2[0 * q + 1] = 1.0; // partial of G w.r.t y_0^1
vec_double xq2 = f.reverse(q, yq2);
// partial G w.r.t x_0^0
ok = ok && xq2[0 * q + 0] == 3.0 + 4.0;
// partial G w.r.t x_1^0
ok = ok && xq2[1 * q + 0] == 2.0 + 4.0;
// partial G w.r.t x_2^0
ok = ok && xq2[2 * q + 0] == 2.0 + 3.0;
// -----------------------------------------------------------------------
a_fun af(f);
ok &= af.size_order() == 0;
//
// zero order forward
vec_a_double axp(n_ind), ayp(n_dep);
p = 0;
axp[0] = 2.0;
axp[1] = 3.0;
axp[2] = 4.0;
ayp = af.forward(p, axp);
ok = ok && ayp[0] == 24.0;
ok &= af.size_order() == 1;
//
// first order reverse
q = 1;
vec_a_double ayq1 = vec_a_double(n_dep);
ayq1[0] = 1.0;
vec_a_double axq1 = af.reverse(q, ayq1);
// partial G w.r.t x_0
ok = ok && axq1[0] == 3.0 * 4.0;
// partial G w.r.t x_1
ok = ok && axq1[1] == 2.0 * 4.0;
// partial G w.r.t x_2
ok = ok && axq1[2] == 2.0 * 3.0;
//
return( ok );
}
Input File: lib/example/cplusplus/fun_reverse_xam.cpp