![]() |
Prev | Next | fun_property_xam.cpp | Headings |
# include <cstdio> # include <cppad/py/cppad_py.hpp> bool fun_property_xam(void) { using cppad_py::a_double; using cppad_py::vec_double; using cppad_py::vec_a_double; using cppad_py::d_fun; using cppad_py::a_fun; // // initialize return variable bool ok = true; // ---------------------------------------------------------------------- int n_ind = 1; // number of independent variables int n_dep = 2; // number of dependent variables int n_var = 1; // phantom variable at address 0 int n_op = 1; // special operator at beginning // // dimension some vectors vec_double x(n_ind); vec_a_double ay(n_dep); // // independent variables x[0] = 1.0; vec_a_double ax = cppad_py::independent(x); n_var = n_var + n_ind; // one for each indpendent n_op = n_op + n_ind; // // first dependent variable ay[0] = ax[0] + ax[0]; n_var = n_var + 1; // one variable and operator n_op = n_op + 1; // // second dependent variable a_double ax0 = ax[0]; ay[1] = ax0.sin(); n_var = n_var + 2; // two varialbes, one operator n_op = n_op + 1; // // define f(x) = y d_fun f(ax, ay); n_op = n_op + 1; // speical operator at end // // check f properties ok = ok && f.size_domain() == n_ind; ok = ok && f.size_range() == n_dep; ok = ok && f.size_var() == n_var; ok = ok && f.size_op() == n_op; ok = ok && f.size_order() == 0; // // compute zero order Taylor coefficients vec_double y = f.forward(0, x); ok = ok && f.size_order() == 1; // // create an a_fun object a_fun af(f); // // ---------------------------------------------------------------------- // check af properties ok = ok && af.size_domain() == n_ind; ok = ok && af.size_range() == n_dep; ok = ok && af.size_var() == n_var; ok = ok && af.size_op() == n_op; ok = ok && af.size_order() == 0; // return( ok ); }