![]() |
Prev | Next | fun_jacobian_xam.cpp | Headings |
# include <cstdio> # include <cppad/py/cppad_py.hpp> bool fun_jacobian_xam(void) { using cppad_py::a_double; using cppad_py::vec_double; using cppad_py::vec_a_double; using cppad_py::d_fun; using cppad_py::a_fun; // // initialize return variable bool ok = true; //------------------------------------------------------------------------ // number of dependent and independent variables int n_dep = 1; int n_ind = 3; // // create the independent variables ax vec_double x(n_ind); for(int i = 0; i < n_ind ; i++) { x[i] = i + 2.0; } vec_a_double ax = cppad_py::independent(x); // // create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2 a_double ax_0 = ax[0]; a_double ax_1 = ax[1]; a_double ax_2 = ax[2]; vec_a_double ay(n_dep); ay[0] = ax_0 * ax_1 * ax_2; // // define af corresponding to f(x) = x_0 * x_1 * x_2 d_fun f(ax, ay); // // compute the Jacobian f'(x) = ( x_1*x_2, x_0*x_2, x_0*x_1 ) vec_double fp = f.jacobian(x); // // check Jacobian double x_0 = x[0]; double x_1 = x[1]; double x_2 = x[2]; ok = ok && fp[0 * n_ind + 0] == x_1 * x_2 ; ok = ok && fp[0 * n_ind + 1] == x_0 * x_2 ; ok = ok && fp[0 * n_ind + 2] == x_0 * x_1 ; //------------------------------------------------------------------------ a_fun af(f); // // compute the Jacobian f'(x) = ( x_1*x_2, x_0*x_2, x_0*x_1 ) vec_a_double afp = af.jacobian(ax); // // check Jacobian ok = ok && afp[0 * n_ind + 0] == x_1 * x_2 ; ok = ok && afp[0 * n_ind + 1] == x_0 * x_2 ; ok = ok && afp[0 * n_ind + 2] == x_0 * x_1 ; // return( ok ); }