|
Prev
| Next
|
|
|
|
|
|
|
fun_hessian_xam.cpp |
Headings |
@(@\newcommand{\B}[1]{ {\bf #1} }
\newcommand{\R}[1]{ {\rm #1} }@)@C++: Dense Hessian Using AD: Example and Test
# include <cstdio>
# include <cppad/py/cppad_py.hpp>
bool fun_hessian_xam(void) {
using cppad_py::a_double;
using cppad_py::vec_double;
using cppad_py::vec_a_double;
using cppad_py::d_fun;
using cppad_py::a_fun;
//
// initialize return variable
bool ok = true;
// -----------------------------------------------------------------------
// number of dependent and independent variables
int n_dep = 1;
int n_ind = 3;
//
// create the independent variables ax
vec_double x(n_ind);
for(int i = 0; i < n_ind ; i++) {
x[i] = i + 2.0;
}
vec_a_double ax = cppad_py::independent(x);
//
// create dependent variables ay with ay0 = ax_0 * ax_1 * ax_2
a_double ax_0 = ax[0];
a_double ax_1 = ax[1];
a_double ax_2 = ax[2];
vec_a_double ay(n_dep);
ay[0] = ax_0 * ax_1 * ax_2;
//
// define af corresponding to f(x) = x_0 * x_1 * x_2
d_fun f(ax, ay);
//
// g(x) = w_0 * f_0 (x) = f(x)
vec_double w(n_dep);
w[0] = 1.0;
//
// compute Hessian
vec_double fpp = f.hessian(x, w);
//
// [ 0.0 , x_2 , x_1 ]
// f''(x) = [ x_2 , 0.0 , x_0 ]
// [ x_1 , x_0 , 0.0 ]
ok = ok && fpp[0 * n_ind + 0] == 0.0 ;
ok = ok && fpp[0 * n_ind + 1] == x[2] ;
ok = ok && fpp[0 * n_ind + 2] == x[1] ;
//
ok = ok && fpp[1 * n_ind + 0] == x[2] ;
ok = ok && fpp[1 * n_ind + 1] == 0.0 ;
ok = ok && fpp[1 * n_ind + 2] == x[0] ;
//
ok = ok && fpp[2 * n_ind + 0] == x[1] ;
ok = ok && fpp[2 * n_ind + 1] == x[0] ;
ok = ok && fpp[2 * n_ind + 2] == 0.0 ;
// -----------------------------------------------------------------------
a_fun af(f);
//
// compute and check Hessian
vec_a_double aw(n_dep);
aw[0] = w[0];
vec_a_double afpp = af.hessian(ax, aw);
ok = ok && afpp.size() == fpp.size();
for(size_t i = 0; i < fpp.size(); ++i)
ok = ok && afpp[i] == fpp[i];
//
return( ok );
}
Input File: lib/example/cplusplus/fun_hessian_xam.cpp