deffun_forward_xam() :
#import numpy
import cppad_py
## initialize return variable
ok = True
# ---------------------------------------------------------------------# number of dependent and independent variables
n_dep = 1
n_ind = 2
## create the independent variables ax
xp = numpy.empty(n_ind, dtype=float)
for i inrange( n_ind ) :
xp[i] = i + 1.0
#
ax = cppad_py.independent(xp)
## create dependent varialbes ay with ay0 = ax0 * ax1
ax0 = ax[0]
ax1 = ax[1]
ay = numpy.empty(n_dep, dtype=cppad_py.a_double)
ay[0] = ax0 * ax1
## define af corresponding to f(x) = x0 * x1
f = cppad_py.d_fun(ax, ay)
## define X(t) = (3 + t, 2 + t)# it follows that Y(t) = f(X(t)) = (3 + t) * (2 + t)## Y(0) = 6 and p ! = 1
p = 0
xp[0] = 3.0
xp[1] = 2.0
yp = f.forward(p, xp)
ok = ok and yp[0] == 6.0
## first order Taylor coefficients for X(t)
p = 1
xp[0] = 1.0
xp[1] = 1.0
## first order Taylor coefficient for Y(t)# Y'(0) = 3 + 2 = 5 and p ! = 1
yp = f.forward(p, xp)
ok = ok and yp[0] == 5.0
## second order Taylor coefficients for X(t)
p = 2
xp[0] = 0.0
xp[1] = 0.0
## second order Taylor coefficient for Y(t)# Y''(0) = 2.0 and p ! = 2
yp = f.forward(p, xp)
ok = ok and yp[0] == 1.0
# ---------------------------------------------------------------------
af = cppad_py.a_fun(f)
ok = ok and af.size_order() == 0
## zero order forward
p = 0
axp = numpy.empty(n_ind, dtype=cppad_py.a_double)
axp[0] = 3.0
axp[1] = 2.0
ayp = af.forward(p, axp)
ok = ok and ayp[0] == cppad_py.a_double(6.0)
ok = ok and af.size_order() == 1
#return( ok )
#