![]() |
Prev | Next | fun_forward_xam.cpp | Headings |
# include <cstdio> # include <cppad/py/cppad_py.hpp> bool fun_forward_xam(void) { using cppad_py::a_double; using cppad_py::vec_double; using cppad_py::vec_a_double; using cppad_py::d_fun; using cppad_py::a_fun; // // initialize return variable bool ok = true; // ---------------------------------------------------------------------- // number of dependent and independent variables int n_dep = 1; int n_ind = 2; // // create the independent variables ax vec_double xp(n_ind); for(int i = 0; i < n_ind ; i++) { xp[i] = i + 1.0; } vec_a_double ax = cppad_py::independent(xp); // // create dependent varialbes ay with ay0 = ax0 * ax1 a_double ax0 = ax[0]; a_double ax1 = ax[1]; vec_a_double ay(n_dep); ay[0] = ax0 * ax1; // // define af corresponding to f(x) = x0 * x1 d_fun f(ax, ay); ok &= f.size_order() == 0; // // define X(t) = (3 + t, 2 + t) // it follows that Y(t) = f(X(t)) = (3 + t) * (2 + t) // // Y(0) = 6 and p ! = 1 int p = 0; xp[0] = 3.0; xp[1] = 2.0; vec_double yp = f.forward(p, xp); ok = ok && yp[0] == 6.0; ok &= f.size_order() == 1; // // first order Taylor coefficients for X(t) p = 1; xp[0] = 1.0; xp[1] = 1.0; // // first order Taylor coefficient for Y(t) // Y'(0) = 3 + 2 = 5 and p ! = 1 yp = f.forward(p, xp); ok = ok && yp[0] == 5.0; ok &= f.size_order() == 2; // // second order Taylor coefficients for X(t) p = 2; xp[0] = 0.0; xp[1] = 0.0; // // second order Taylor coefficient for Y(t) // Y''(0) = 2.0 and p ! = 2 yp = f.forward(p, xp); ok = ok && yp[0] == 1.0; ok &= f.size_order() == 3; // ---------------------------------------------------------------------- a_fun af(f); ok &= af.size_order() == 0; // // zero order forward vec_a_double axp(n_ind), ayp(n_dep); p = 0; axp[0] = 3.0; axp[1] = 2.0; ayp = af.forward(p, axp); ok = ok && ayp[0] == 6.0; ok &= af.size_order() == 1; // return( ok ); }